Lysophosphatidylinositol Signalling and Metabolic Diseases.
نویسندگان
چکیده
Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.
منابع مشابه
Characterization of calcium signals provoked by lysophosphatidylinositol in human microvascular endothelial cells.
The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca(2+) mobilization in human brain microvascular endothelial cells. Changes in ...
متن کاملSignalling and function of the human G protein-coupled receptor 55
Results Here we show that GPR55 is activated by lysophosphatidylinositol (LPI), AM251, SR141716A (rimonabant) and AM281. GPR55 activation induces NFB, NFAT and CREB activation. Stimulation of GPR55 induces F-actin formation under the control of Ga13, RhoA and ROCK. We also show the suitability of Corning® Epic® DMR assay for GPR55 ligand screening. Furthermore, GPR55 activation leads to phospho...
متن کاملLysophospholipid receptors in drug discovery.
Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological a...
متن کاملGPR55-dependent and -independent ion signalling in response to lysophosphatidylinositol in endothelial cells
BACKGROUND AND PURPOSE The glycerol-based lysophospholipid lysophosphatidylinositol (LPI) is an endogenous agonist of the G-protein-coupled receptor 55 (GPR55) exhibiting cannabinoid receptor-like properties in endothelial cells. To estimate the contribution of GPR55 to the physiological effects of LPI, the GPR55-dependent and -independent electrical responses in this cell type were investigate...
متن کاملRESEARCH PAPER: GPR55dependent and independent ion signalling in response to lysophosphatidylinositol in endothelial cells
Background and purpose: The glycerol-based lysophospholipid lysophosphatidylinositol (LPI) is an endogenous agonist of the G-protein-coupled receptor 55 (GPR55) exhibiting cannabinoid receptor-like properties in endothelial cells. To estimate the contribution of GPR55 to the physiological effects of LPI, the GPR55-dependent and -independent electrical responses in this cell type were investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metabolites
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2016